Skip to Content

Marine Habitat Classification


Search


2 results for 'SS.SCS.ICS.SLan'

   SS.SCS.ICS.SLan  Dense Lanice conchilega and other polychaetes in tide-swept infralittoral sand and mixed gravelly sand

Dense beds of Lanice conchilega occur in coarse to medium fine gravelly sand in the shallow sublittoral, where there are strong tidal streams or wave action. Several other species of polychaete also occur as infauna e.g. Spiophanes bombyx, Scoloplos armiger, Chaetozone setosa and Magelona mirabilis. Lanice beds are found in a wide range of habitats including muddier mixed sediment. The dense Lanice biotope (LS.LSa.MuSa.Lan) on certain lower shores may be a littoral extension of the current biotope. The presence of L. conchilega in high numbersmay, over time, stabilise the sediment to the extent where a more diverse community may develop. Possibly, as a result of this, there is a high level of variation with regard the infauna found in SS.SCS.ICS.SLan. It is likely that a number of sub-biotopes may subsequently be identified for this biotope. Offshore from the Wash and the North Norfolk coast Lanice beds are often found intermixed with Sabellaria spinulosa beds in muddier mixed sediment, particularly in the channels between the shallow sandbanks, which are prevalent in this area. It is possible that the presence of Lanice has stabilised the habitat sufficiently to allow the deposition of finer material, which has subsequently assisted the development of S. spinulosa. It may be more accurate to define SS.SCS.ICS.SLan as an epibiotic biotope which overlays a variety of infaunal biotopes (e.g. SS.SSa.IFiSa.NcirBat in finer sands and SS.SSa.CMuSa.AalbNuc or SS.SSa.IMuSa.FfabMag in slightly muddier areas).

   SS.SMp.SSgr.Zmar  Zostera marina/angustifolia beds on lower shore or infralittoral clean or muddy sand

Expanses of clean or muddy fine sand and sandy mud in shallow water and on the lower shore (typically to about 5 m depth) can have dense stands of Zostera marina/angustifolia [Note: the taxonomic status of Z. angustifolia is currently under consideration]. In SS.Smp.SSgr.Zmar the community composition may be dominated by these Zostera species and therefore characterised by the associated biota. Other biota present can be closely related to that of areas of sediment not containing Zostera marina, for example, Saccharina latissima, Chorda filum and infaunal species such as Ensis spp. and Echinocardium cordatum (e.g. Bamber 1993). From the available data it would appear that a number of sub-biotopes may be found within this biotope dependant on the nature of the substratum and it should be noted that sparse beds of Zostera marina may be more readily characterised by their infaunal community. For example, coarse marine sands with seagrass have associated communities similar to SS.SCS.ICS.MoeVen, SS.SCS.ICS.SLan or SS.SCS.ICS.Glap whilst muddy sands may have infaunal populations related to SS.SSa.IMuSa.EcorEns, SS.SMu.IMuSa.AreISa and SS.SSa.IMuSa.FfabMag. Muddy examples of this biotope may show similarities to SS.SMu.ISaMu.CundAasp, SS.SMu.IFiMu.PhiVir, SS.SMu.IFiMu.Are or SS.SMu.CSaMu.AfilKurAnit. At present the data does not permit a detailed description of these sub-biotopes but it is likely that with further study the relationships between these assemblages will be clarified. Furthermore, whilst the Zostera biotope may be considered an epibiotic overlay of established sedimentary communities it is likely that the presence of Zostera will modify the underlying community to some extent. For example, beds of this biotope in the south-west of Britain may contain conspicuous and distinctive assemblages of Lusitanian fauna such as Laomedea angulata, Hippocampus spp. and Stauromedusae. In addition, it is known that seagrass beds play an important role in the trophic status of marine and estuarine waters, acting as an important conduit or sink for nutrients and consequently some examples of Zostera marina beds have markedly anoxic sediments associated with them.
Back to top